曾虹

发布者:曾虹发布时间:2022-09-15浏览次数:2776

个人简介

 | Introduction


曾虹,男,博士,杭州电子科技大学教授,中国计算机学会会员。长期从事脑认知计算、基于机器学习的脑电信号分析方法等方面的研究工作。近年来,以主要参与者的身份先后参加了相关方向的多项科研项目(包括国家自然科学基金两化融合项目、国家自然科学基金重点项目、浙江省科技计划项目重大专项等)。在IEEE Trans Neural Syst Rehabil Eng、Cognitive NeuroDynamics、IEEE EMBS等国内外重要期刊和会议上发表高水平论文10余篇,其中SCI收录6篇,授权发明专利10余项。完成多项横向课题,并为企业创造1000余万元的经济效益。

Hong Zeng is a professor with the School of Computer Science and Technology at Hangzhou Dianzi University in China. His research interests include Artificial Intelligence, Machine Learning, Cognitive Computing, Brain-computer Interface (BCI), etc.

教育经历

 | Education


2014.09-2018.10   博士   杭州电子科技大学   计算机科学与技术专业

2002.09-2005.04   硕士   杭州电子科技大学   计算机应用技术

1994.09-1998.06   学士   杭州大学                 计算机科学与技术

2014.09-2018.10   Ph.D.         Hangzhou Dianzi University, CS

2002.09-2005.04   Master      Hangzhou Dianzi University, CS

1994.09-1998.06   Bachelor    Hangzhou University, CS

工作经历

 | Work


2019.01-2019.12   意大利罗马第一大学        访问教授

2014.01-至今         杭州电子科技大学            教授

2005.04-2013.12   杭州电子科技大学            讲师

1998.09-2002.08   南昌航空大学                   助教

2019.01-2019.12    Sapienza University of Rome       Visiting Professor

2016.01-Now        Hangzhou Dianzi University           Associate Professor

2005.04-2013.12   Hangzhou Dianzi University          Assistant Professor

1998.09-2002.08   Nanchang Hangkong University    Assistant Professor

奖励

 | Awards


“基于脑机接口的主动式康复及效果评价系统”           中国电子学会技术发明  三等奖(3/8)      2018年

“全方位移动平台关键技术研究与系列化产品研发”    浙江省科学技术进步奖  一等奖(13/14)  2015年

“基于CAN总线的组合仪表开发”                                浙江省科学技术进步奖  三等奖(3/7)      2010年

“纺织机械无刷直流电机及数字式智能驱动器”           浙江省科学技术进步奖  三等奖(4/7)      2008年

“公路隧道照明节能环保型控制系统的研制”               丽水市科学技术奖         一等奖(1/7)      2015年

项目

 | Projects


[1] 国家自然科学基金面上项目,面向轻度认知障碍患者功能演化的脑机共生模型关键技术研究,62076083, 2021/01-2024/12, 59万元,在研,主持(1/10)

[2] 科技部杰出人才项目,发展中国家国际杰出青年科学家项目,埃及-18-051,2019/07-2020/06, 15万元,主持(1/1)

[3] 国家自然科学基金NSFC-浙江两化融合联合基金,面向浙江省制造业的大数据分析理论与关键技术研究,U1509216,2016/01-2019/12,226万元,在研,参加(6/15)

[4] 国家自然科学基金面上项目,多核混合关键度系统中软件级节能关键技术研究,61572164,2016/01-2019/12,65万元,在研,参加(2/10)

[5] 国家自然科学基金面上项目,物联网环境信息协同感知与处理研究,61473109,2015/01-2018/12,84万元,在研,参加(7/10)

[6] 浙江省重点创新团队项目,2009R50046-6,重大交通基础设施安全监测系统示范,2010/01-2013/12,13万元,已结题,主持(1/6)

[7] 浙江省科技计划项目,2008C21156,公路隧道照明节能环保型控制系统的研制,2008/01-2010/06,30万元,已结题,主持(1/10)

[8] 国家自然科学基金青年科学基金项目,60772006,普适环境下自适应中间件模型与方法研究,2008/01-2010/12,18万元,已结题,参加(2/10)

[9]科技部国家重点研发计划项目,2022YFE0199300,AD早期甄查的关键技术与核心装备的研发,2022-2025,300万元.

[10]国家自然科学基金面上项目,62076083,面向轻度认知障碍患者功能演化的脑机共生模型关键技术研究,2021/01-2024/12, 59万元.

[11]杭州市人工智能重大科技创新项目,2022AIZD0159,基于AI技术提供认知筛查康养服务的智慧社区/乡村平台,2022-2024,300万元.

论文

 | Publications


[1] Zeng, H., Xia, N., Tao, M., Pan, D., Zheng, H., Wang, C., ... & Dai, G. (2023). DCAE: A dual conditional autoencoder framework for the reconstruction from EEG into image. Biomedical Signal Processing and Control, 81, 104440.

[2] Zeng, H., Wu, Q., Jin, Y., Zheng, H., Li, M., Zhao, Y., ... & Kong, W. (2022). Siam-GCAN: a Siamese Graph Convolutional Attention Network for EEG Emotion Recognition. IEEE Transactions on Instrumentation and Measurement.

[3] Zeng, H., & Zakaria, W. (2022). A new common spatial pattern-based unified channels algorithm for driver’s fatigue EEG signals classification. Neural Computing and Applications, 1-23.

[4] Zeng, H., Fang, X., Zhao, Y., Wu, J., Li, M., Zheng, H., ... & Dai, G. (2022). EMCI: A Novel EEG-Based Mental Workload Assessment Index of Mild Cognitive Impairment. IEEE Transactions on Biomedical Circuits and Systems.

[5] Zhao, Y., Dai, G., Fang, X., Wu, Z., Xia, N., Jin, Y., & Zeng, H. (2022). E3GCAPS: Efficient EEG-based multi-capsule framework with dynamic attention for cross-subject cognitive state detection. China Communications, 19(2), 73-89.

[6] Zeng, H., Jin, Y., Wu, Q., Pan, D., Xu, F., Zhao, Y., ... & Kong, W. (2022). EEG-FCV: An EEG-Based Functional Connectivity Visualization Framework for Cognitive State Evaluation. Frontiers in Psychiatry, 13.

[7] Di Flumeri, G., Ronca, V., Giorgi, A., Vozzi, A., Aricò, P., Sciaraffa, N., ... & Borghini, G. (2022). EEG-Based Index for Timely Detecting User’s Drowsiness Occurrence in Automotive Applications. Frontiers in Human Neuroscience, 16.

[8] Zhao, Y., Dai, G., Borghini, G., Zhang, J., Li, X., Zhang, Z., ... & Zeng, H.(Corresponding Author) (2021). Label-Based Alignment Multi-Source Domain Adaptation for Cross-Subject EEG Fatigue Mental State Evaluation. Frontiers in Human Neuroscience, 546.

[9] Zeng, H., Li X, Borghini G, et al. An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction[J]. Sensors, 2021, 21(7): 2369.

[10] Zeng, H., Zhang, J., Zakaria, W., Babiloni, F., Gianluca, B., Li, X., & Kong, W. (2020). InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection. Sensors, 20(24), 7251.

[11] Shen, F., Dai, G., Lin, G., Zhang, J., Kong, W., & Zeng, H. (Corresponding author) (2020). EEG-based emotion recognition using 4D convolutional recurrent neural network. Cognitive Neurodynamics, 1-14. (SCI,IF:3.925, 2020)

[12] Jing, X., Zeng, H., Wang, S., & Xu, J. (2020) (Joint first author). A Web-Based Protocol for Interprotein Contact Prediction by Deep Learning. In Protein-Protein Interaction Networks (pp. 67-80). Humana, New York, NY. (2020)

[13] Zhenhua Wu, Hong Zeng, Yue Zhao, Xiufeng Li, Jiaming Zhang, and Motonobu Hattori, Cross-subject EEG Channel Optimization by Domain Adversarial Sparse Learning Model, in Proceeding on BIBM'2020 (2020, Accepted)

[14] Hong Zeng, Jiaming Zhang, Wael Zakaria, Fabio Babiloni *, Gianluca Borghini, Xiufeng Li, Wanzeng Kong, InstanceEasyTL: An Improved Transfer Learning Method for EEG-based Cross-subject Fatigue Detection, Sensors, 2020 (Accepted) (SCI, IF: 3.275, 2020)

[15] Zeng, H., Wu, Z., Zhang, J., Yang, C., Zhang, H., Dai, G., & Kong, W. (2019). EEG Emotion Classification Using an Improved SincNet-Based Deep Learning Model. Brain sciences, 9(11), 326. (SCI, IF: 3.332, 2019)

[16] Zeng, H., Yang, C., Zhang, H., Wu, Z., Zhang, J., Dai, G., ... & Kong, W. (2019). A lightGBM-based EEG analysis method for driver mental states classification. Computational intelligence and neuroscience, 2019. (SCI, IF: 2.284, 2019)

[17] Kong, W., Fu, S., Deng, B., Zeng, H., Zhang, J., & Guo, S. (2019). Embedded BCI Rehabilitation System for Stroke. Journal of Beijing Institute of Technology, (1), 5.

[18] Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo. A web server for inter-protein contact prediction using deep learning[J],Nucleic Acids Research(SCI,IF:11.562, 2018)

[19] Zeng H, Yang C, Dai G, et al. EEG Classification of driver mental states by deep learning[J]. Cognitive Neurodynamics. (SCI,IF:2.000, 2018)

[20] Zeng, Hong, Dai Guojun, Kong Wanzeng, et al. A Novel Nonlinear Dynamic Method for Stroke Rehabilitation Effect Evaluation using EEG[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering(SCI,IF:3.410,2017)

[21] Kong W, Guo S, Long Y, Zeng H, et al. Weighted extreme learning machine for P300 detection with application to brain computer interface[J]. Journal of Ambient Intelligence & Humanized Computing(SCI,IF:1.858, 2018)

[22] Lei X, Wang L, Kong W, Zeng H, et al. Identification of EEG features in stroke patients based on common spatial pattern and sparse representation classification[C]// International IEEE/EMBS Conference on Neural Engineering. IEEE, 2017.

[23] Hong Zeng, Yidan Hu, Jin Fan, Haiyang Hu, Zhigang Gao, and Qiming Fang. Arm motion recognition and exercise coaching system for remote interaction[J], Mobile Information Systems (SCI, IF: 0.949, 2016)

[24] Hong Zeng, Jianhui Zhang, Guojun Dai, Zhigang Gao, and Haiyang Hu. Security Visiting: RFID-based smartphone indoor guiding system[J], International Journal of Distributed Sensor Networks(SCI, IF: 0.949, 2014)

[25] Hong Zeng, Jianhui Zhang, and Guojun Dai. Construction of low weighted and fault-tolerant topology for wireless ad hoc and sensor network[J], International Journal of Sensor Network(SCI,IF: 0.727, 2013)

[26] Zhao Y, Zeng H(*), Zheng H, et al. A bidirectional interaction-based hybrid network architecture for EEG cognitive recognition[J]. Computer Methods and Programs in Biomedicine, 2023, 238: 107593. (通信作者)

[27] Hong Zeng, Nianzhang Xia, Dongguan Qian, Motonobu Hattori, Chu Wang and Wanzeng Kong. DM-RE2I: A framework based on Diffusion Model for the Reconstruction from EEG to Image, Biomedical Signal Processing and Control(2023)

[28] Pan, D., Zheng, H., Xu, F., Ouyang, Y., Jia, Z., Wang, C., & Zeng H, (2023). MSFR-GCN: A Multi-scale Feature Reconstruction Graph Convolutional Network for EEG Emotion and Cognition Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[29] Xu, F., Pan, D., Zheng, H., Ouyang, Y., Jia, Z., & Zeng, H*. (2023). EESCN: A Novel Spiking Neural Network Method for EEG-based Emotion Recognition. Computer Methods and Programs in Biomedicine, 107927.

[30] Wang, Z., Ouyang, Y., & Zeng, H. (2024). ARFN: An Attention-Based Recurrent Fuzzy Network for EEG Mental Workload Assessment. IEEE Transactions on Instrumentation and Measurement.

[31] Qian, D., Zeng, H., Cheng, W., Liu, Y., Bikki, T., & Pan, J. (2024). NeuroDM: Decoding and visualizing human brain activity with EEG-guided diffusion model. Computer Methods and Programs in Biomedicine, 108213.

[32] H Zeng, Y Zhao, F Babiloni, M Tao, W Kong, G Dai (2024). A General DNA-like Hybrid Symbiosis Framework: An EEG Cognitive Recognition Method, IEEE Journal of Biomedical and Health Informatics.

[33] Ouyang, Y., Liu, Y., Shan, L., Jia, Z., Qian, D., Zeng, T., & Zeng, H. (2025). DAEEGViT: A domain adaptive vision transformer framework for EEG cognitive state identification. Biomedical Signal Processing and Control, 100, 107019.

[34] Kong, X., Guo, Y., Ouyang, Y., Cheng, W., Tao, M., & Zeng, H*. (2025). MT-RCAF: A Multi-Task Residual Cross Attention Framework for EEG-based emotion recognition and mood disorder detection. Computer Methods and Programs in Biomedicine, 108835.

[35] Wenjie Cheng, Jun Tan, Lizhi Wang, María Trinidad Herrero, & Hong Zeng*,(2025). Fine-grained image generation with EEG multi-level semantics, Computer Methods and Programs in Biomedicine,Volume 269, 108909.

发明专利

 | Patents


[1] 基于生成对抗域自适应的跨被试EEG疲劳状态分类方法, 国家发明专利(实审中)

[2] 一种基于稀疏学习和域对抗网络的脑电通道优化方法, 国家发明专利(实审中)

[3] 基于脑电样本权重调整的跨被试疲劳驾驶分类方法, 国家发明专利(实审中)

[4] 一种基于循环生成对抗网络的脑电伪迹修复的方法, 国家发明专利(实审中)

[5] 一种使用干电极的脑电采集眼镜, 国家发明专利(实审中)

[6] 基于原型的聚类算法用于域适应类别不平衡的脑电信号认知状态识别方法, 国家发明专利(实审中)

[7] 一种基于RSSI的近距离精确定位方法,国家发明专利,中国,中华人民共和国知识产权局,201410256215.X,已授权(2017)

[8] 一种基于智能手机的姿态识别及远程训练方法与系统,国家发明专利, 中国 , 中华人民共和国国家知识产权局,201410390646.5,已授权(2016)

[9] 一种单目视觉实时定位方法,国家发明专利, 中国 , 中华人民共和国国家知识产权局,201410255274.5,已授权(2016)

[10] 一种适用于智能车的多节点协调通信方法,国家发明专利, 中国,中华人民共和国国家知识产权局,201110220474.3,已授权(2013)

[11] 一种用于中风的嵌入式康复装置,国家发明专利,中国,中华人民共和国国家知识产权局,201710231120.6,已授权(2017年)

联系方式

 | Contact


jivon@hdu.edu.cn